5 research outputs found

    A Novel Electrochemical Biosensor Based On Fe3O4 Nanoparticles-Polyvinyl Alcohol Composite for Sensitive Detection of Glucose

    Get PDF
    In this research, a new electrochemical biosensor was constructed for the glucose detection. Iron oxide nanoparticles (Fe3O4) were synthesized through co-precipitation method. Polyvinyl alcohol-Fe3O4 nanocomposite was prepared by dispersing synthesized nanoparticles in the polyvinyl alcohol (PVA) solution. Glucose oxidase (GOx) was immobilized on the PVA-Fe3O4 nanocomposite via physical adsorption. The mixture of PVA, Fe3O4 nanoparticles and GOx was drop cast on a tin (Sn) electrode surface (GOx/PVA-Fe3O4/Sn). The Fe3O4 nanoparticles were characterized by X-ray diffraction (XRD). Also, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) techniques were utilized to evaluate the PVA-Fe3O4 and GOx/PVA-Fe3O4 nanocomposites. The electrochemical performance of the modified biosensor was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Presence of Fe3O4nanoparticles in the PVA matrix enhanced the electron transfer between enzyme and electrode surface and the immobilized GOx showed excellent catalytic characteristic toward glucose. The GOx/PVA-Fe3O4/Sn bioelectrode could measure glucose in the range from 5 × 10−3 to 30 mM with a sensitivity of 9.36 μA mM−1 and exhibited a lower detection limit of 8 μM at a signal-to-noise ratio of 3. The value of Michaelis-Menten constant (KM) was calculated as 1.42 mM. The modified biosensor also has good anti-interfering ability during the glucose detection, fast response (10 s), good reproducibility and satisfactory stability. Finally, the results demonstrated that the GOx/PVA-Fe3O4/Sn bioelectrode is promising in biosensor construction

    Development of Optical Biosensor Technologies for Cardiac Troponin Recognition

    Get PDF
    Acute myocardial infarction (AMI) is the leading cause of death among cardiovascular diseases. Among the numerous attempts to develop coronary marker concepts into clinical strategies, cardiac troponin is known as a specific marker for coronary events. The cardiac troponin concentration level in blood has been shown to rise rapidly for 4–10 days after onset of AMI, making it an attractive approach for a long diagnosis window for detection. The extremely low clinical sensing range of cardiac troponin levels consequently makes the methods of detection highly sensitive. In this review, by taking into consideration optical methods applied for cardiac troponin detection, we discuss the most commonly used methods of optical immunosensing and provide an overview of the various diagnostic cardiac troponin immunosensors that have been employed for determination of cardiac troponin over the last several years

    Evaluation of Glycated Albumin (GA) and GA/Hba1c Ratio for Diagnosis of Diabetes and Glycemic Control: A Comprehensive Review

    Get PDF
    Diabetes Mellitus (DM) is a group of metabolic diseases characterized by chronic high blood glucose concentrations (hyperglycemia). When it is left untreated or improperly managed, it can lead to acute complications including diabetic ketoacidosis and non-ketotic hyperosmolar coma. In addition, possible long-term complications include impotence, nerve damage, stroke, chronic kidney failure, cardiovascular disease, foot ulcers, and retinopathy. Historically, universal methods to measure glycemic control for the diagnosis of diabetes included fasting plasma glucose level (FPG), 2-h plasma glucose (2HP), and random plasma glucose. However, these measurements did not provide information about glycemic control over a long period of time. To address this problem, there has been a switch in the past decade to diagnosing diabetes and its severity through measurement of blood glycated proteins such as Hemoglobin A1c (HbA1c) and glycated albumin (GA). Diagnosis and evaluation of diabetes using glycated proteins has many advantages including high accuracy of glycemic control over a period of time. Currently, common laboratory methods used to measure glycated proteins are high-performance liquid chromatography (HPLC), immunoassay, and electrophoresis. HbA1c is one of the most important diagnostic factors for diabetes. However, some reports indicate that HbA1c is not a suitable marker to determine glycemic control in all diabetic patients. GA, which is not influenced by changes in the lifespan of erythrocytes, is thought to be a good alternative indicator of glycemic control in diabetic patients. Here, we review the literature that has investigated the suitability of HbA1c, GA and GA:HbA1c as indicators of long-term glycemic control and demonstrate the importance of selecting the appropriate glycated protein based on the patient’s health status in order to provide useful and modern point-of-care monitoring and treatment
    corecore